ma the ma tisch

cen trum

AFDELING ZUIVERE WISKUNDE (DEPARTMENT OF PURE MATHEMATICS)

ZN 92/79

NOVEMBER

A.M. COHEN

A NEW PARTIAL GEOMETRY WITH PARAMETERS $(s,t,\alpha)=(7,8,4)$

amsterdam

1979

stichting mathematisch centrum

AFDELING ZUIVERE WISKUNDE (DEPARTMENT OF PURE MATHEMATICS) ZN 92/79 NOVEMBER

A.M. COHEN

A NEW PARTIAL GEOMETRY WITH PARAMETERS $(s,t,\alpha) = (7,8,4)$

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O).

A new partial geometry with parameters $(s,t,\alpha) = (7,8,4)$

bУ

Arjeh M. Cohen

ABSTRACT

A partial geometry with parameters as given in the title is constructed by use of the 240 points closest to the origin in the lattice \mathbf{E}_8 .

KEYWORDS & PHRASES: partial geometry, strongly regular graph, lattice E8.

INTRODUCTION.

A partial geometry (V,L) with parameters (s,t,α) is a finite nonempty set V of points together with a family L of subsets of V called lines such that

- (i) For any two points in V there is at most one line containing them both (If such a line exists, the two points are called collinear);
- (ii) Each line in L contains exactly s+1 points (s \ge 1);
- (iii) Each point is contained in exactly t+1 lines (t \geq 1);
- (iv) For any point x ϵ V and any line L ϵ L not containing x there are exactly α points on L collinear with x.

A partial geometry (V,L) with parameters (s,t, α) consists of $v=(s+1)\,(st+\alpha)/\alpha$ points and $b=(t+1)\,(st+\alpha)/\alpha$ lines. Furthermore, there are exactly k=s(t+1) points collinear with a given point and $\mu=\alpha(t+1)$ points collinear with each of any two given mutually non-collinear ones.

From (V,L) a graph G=(V,E) can be constructed on the points of V such that two points are adjacent whenever they are collinear. Such a graph is strongly regular with parameters (v,k,λ,μ) , where $\lambda=t(\alpha-1)+s-1$ is the number of points collinear with each of any two given collinear ones. This amounts to saying that each point in the graph G has valency K and that any two connected (non-connected) points have K common neighbors. More about partial geometries—can be found in BOSE [3]. It will be clear that for any system (V,L) not necessarily satisfying all axioms (i),...,(iv) a graph G=G(V,L) can be constructed in the way described above. This graph may very well be strongly regular while (V,L) is not a partial geometry. However, the following holds.

LEMMA. If (V,L) is a pair consisting of a finite nonempty set V and a family L of subsets of V such that for given $s,t \geq 1$, the axioms (i), (ii), (iii) are satisfied and such that there is a natural number α for which the graph G(V,L) is strongly regular with parameters $(V,k,\lambda,\mu,\nu) = ((s+1)(st+\alpha)/\alpha,s(t+1),t(\alpha-1)+s-1,\mu)$, then (V,L) is a partial geometry with parameters (s,t,α) .

<u>PROOF.</u> It suffices to check axiom (iv). Fix a line L ϵ L. For x ϵ V outside L we denote by $\alpha_{\mathbf{x}}$ the number of points in L that are collinear with x. By counting arguments, we obtain

$$\sum_{\mathbf{x} \notin \mathbf{L}} \alpha_{\mathbf{x}} = (s+1) \text{ ts and}$$

$$\sum_{\mathbf{x} \notin \mathbf{L}} {\alpha_{\mathbf{x}} \choose 2} = {s+1 \choose 2} (\lambda - s + 1),$$

whence $\sum_{x \in L} (\alpha - \alpha_x)^2 = 0$. This implies that $\alpha_x = \alpha$ for any $x \notin L$, so we are through. []

For a description of the selfdual unimodular lattice E_8 of rank 8, the reader is referred to [2] or [4]. Consider the strongly regular graph G_0 whose points are the 120 lines through the origin containing a nonzero vector of minimal distance to the origin in the lattice E_8 (points being connected whenever they represent mutually orthogonal lines with respect to the bilinear form on E_8). Mathon suggested that study of G_0 , whose parameters are $(v,k,\lambda,\mu)=(120,63,30,36)$, might lead to a new partial geometry with parameters $(s,t,\alpha)=(7,8,4)$. This note is concerned with the construction of such a partial geometry. The help of H.A. Wilbrink has been crucial for the outcome.

CONSTRUCTION. S_5 (A_5) denotes the symmetric (alternating) group on 5 letters. Moreover a formal element τ outside A_5 is chosen so as to obtain a copy $\tau A_5 = \{\tau x \mid x \in A_5\}$ of A_5 . Now put $V = A_5$ U τA_5 . We shall use the permutation representations c of S_5 on V by conjugation and r of A_5 on V by right multiplication, both acting in such a way that τ is fixed. Thus $c(g)(\tau a) = \tau g a g^{-1}$ ($a \in A_5, g \in S_5$) and $r(h)(\tau a) = \tau a h$ ($h, a \in A_5$). Conjugation of $v \in V$ by $g \in S_5$ will also be denoted by writing g in the exponent of v, i.e. $v^g = c(g)v$. Similarly for subsets x of v:

$$x^g = \{x^g | x \in X\}$$

We write down three lines of V explicitly:

$$\begin{array}{l} \mathbf{L}_1 &= \{1, (15243), (13254), (12345), \tau(23) \, (15), \tau(34) \, (25), \tau(13) \, (45), \tau(124) \}, \\ \mathbf{L}_5 &= \{1, (12) \, (34), (13) \, (24), (14) \, (23), \tau(142), \tau(243), \tau(134), \tau(123) \}, \\ \mathbf{L}_6 &= \{1, (14) \, (25), (12) \, (45), (24) \, (15), \tau, \tau(14) \, (25), \tau(12) \, (45), \tau(24) \, (15) \} \end{array} .$$

Finally, denoting by K the group generated by (124) and (14)(25) (isomorphic to ${\bf A}_4$), we can define the set L of all lines on V:

$$I = \{L_{m}^{g}h \mid g \in K; h \in A_{5}; m = 1,5,6\}.$$

Clearly by construction c(K). $r(A_5)$ is a group of automorphisms of (V,L) isomorphic to $A_4 \times A_5$. This is not all of Aut (V,L) as for instance

$$\pi \begin{cases} x & \mapsto \tau x \text{(1245)} \\ \tau x & \mapsto x \text{(1245)} \end{cases} \qquad (x \in A_5)$$

defines an automorphism not contained in this subgroup. Let A be the group of automorphisms generated by c(K) . $r(A_{\S})$ and $\pi.$

THEOREM. (V,L) is a partial geometry with parameters $(s,t,\alpha)=(7,8,4)$. The corresponding graph is isomorphic to G_0 .

PROOF OF THE THEOREM. First of all we shall establish a correspondence between the points closest to the origin in E $_8$ and the points of V. In order to do so we present E $_8$ in the following way. Take $\tau = (1+\sqrt{5})/2$ and consider the skew field $\mathbb{H}(\tau)$ of real quaternions with coefficients in (τ) (τ). Choose the basis 1,i,j,k such that τ = τ = τ = τ and τ = τ = τ = τ and τ = τ = τ = τ = τ and τ = τ =

$$N(x) = x\bar{x}$$
 and

Re(x) =
$$\frac{1}{2}$$
(x + $\frac{1}{x}$) = x respectively.

Thus any nonzero $x \in \mathbb{H}(\tau)$ has inverse $x \in \mathbb{N}(x)^{-1}$. The subgroup of the multiplicative group of nonzero elements in $\mathbb{H}(\tau)$ generated by i,j, $\tau = \frac{1}{2}(-1 + (1-\tau)i - \tau j)$ will be denoted by Ic. It is isomorphic to $\mathrm{Sl}_2(5)$ and of order 120. In fact there is an epimorphism $\mathrm{Ic} \to A_5$ determined by $i \mapsto (12)(34)$, $j \mapsto (13)(24)$, $\zeta \mapsto (124)$, $w \mapsto (235)$. Thus each point in A_5 can (and will) be identified with the two points in its inverse image under the epimorphism. In order to extend this identification to all of V, we just identify $\mathrm{Tx}(x \in A_5)$ with $+\mathrm{Tx}$, a set of two elements in TIC .

Next we will supply the subring \mathbb{Z} [Ic] of \mathbb{H} (τ) generated by all elements of Ic with the structure of a \mathbb{Z} -lattice by defining a quadratic form q on \mathbb{Z} [Ic]. Write $\mathsf{t}(\mathsf{a}+\mathsf{b}\tau)=\mathsf{a}$ for $\mathsf{a},\mathsf{b}\in \mathbb{Q}$. The form q is then given by $\mathsf{q}(\mathsf{x})=2(\mathsf{t}\circ\mathsf{N}(\mathsf{x}))$ for $\mathsf{x}\in\mathbb{Z}$ [Ic]. The corresponding bilinear form is $(\mathsf{x},\mathsf{y})=2\mathsf{t}(\mathsf{Re}\ \bar{\mathsf{x}}\mathsf{y})$ $(\mathsf{x},\mathsf{y}\in\mathbb{Z}$ [Ic]).

Now $(\mathbb{Z}[\text{Ic}],\underline{q})$ is an even unimodular 8-dimensional lattice, and therefore isomorphic to E_8 (cf. [4], p.55). Moreover each element in V determines a unique line through the origin containing two nonzero points in E_8 closest to the origin, and vice versa.

It is easily checked that if two points x,y ϵ V are collinear in (V,L), they are perpendicular with respect to the bilinear form derived from q. Thus G(V,L) is a subgraph of G_0 with the same number of points and the same number of edges and therefore coincides with G_0 . As to the proof of the first statement of the theorem, clearly each line contains 8 points. There are exactly 9 lines containing the point 1, namely 4 in the A-orbit of L_1 , 4 in the A-orbit of L_5 , and L_6 . They are denoted by $L_1, L_2, L_3, L_4, L_5, L_7, L_8, L_9$ and L_6 respectively and written out explicitly in table 1. As no point \neq 1 occurs twice in this table, axioms (i), (iii) hold if one of the points concerned is 1. But the group A acts transitively of the 120 points of V, so the two axioms hold without restriction. Finally, as G(V,L) is strongly regular, axiom (iv) is a consequence of the Lemma. \Box

REMARKS (i) Let Ω be the subset of A_5 consisting of all elements in the A_5 -conjugacy classes of (12345) and (12)(34). The complete subgraph of G_0 on the points of A_5 is the Cayley graph $\Gamma(A_5,\Omega)$ in the BIGGS' notation [1]. If Ω_1 is the union of the A_5 -conjugacy classes (12354) and

 $\frac{\texttt{table 1}}{\texttt{The lines in } L \texttt{ containing 1}}$

line	elements in the line										
L ₁	1	(15243)	(13254)	(12345)	τ(23)(15)	τ (34) (25)	τ(13)(45)	т (124)			
L ₂	1	(13425)	(12453)	(14352)		τ (24) (35)					
L ₃	1	(14523)	(15324)	(13542)	τ(13)(24)						
$^{ t L}_4$	1	(15432)	(12534)		τ(14)(23)						
L ₅	1	(12) (34)	(13) (24)	(14) (23)		τ (243)	τ (134)	τ(123)			
^L 6	1	(14) (25)	(12) (45)	(24) (15)	τ.1	τ (14) (25)	τ(12)(45)	τ(24)(15)			
L ₇	1	(15) (23)	(12) (35)	(13) (25)	τ(132)	τ (235)	τ(125)	τ(315)			
L ₈	1	(23) (45)	(25) (34)	(24) (35)	τ(234)	τ (354)	τ (245)	τ (253)			
L ₉	1	(14) (35)	(15) (34)	(13) (45)	τ(143)	τ(135)	τ(154)	τ (345)			

 $\frac{\text{table 2}}{\text{The lines in } \textit{L} \text{ containing } \tau}$

line	elements in the line									
$L_{\tau 1}$	(142)	(13) (25)	(23) (45)	(15) (34)	τ τ(14325)	τ (13452)	τ (15423)			
$L_{\tau 2}$	(15) (23)	(12) (34)	(14) (35)	(245)	τ τ(14532)	τ (15234)	τ (12435)			
$L_{\tau 3}$	(34) (25)	(13) (24)	(12) (35)	(154)	τ τ(15342)	τ (12543)	τ (13524)			
$\mathbf{L}_{\tau 4}$	(13) (45)	(14) (23)	(24) (35)	(125)	τ τ(13245)	τ (14253)	τ (12354)			
L_{T5}	(124)	(234)	(143)	(132)	τ τ(12)(34)	τ(13)(24)	τ(14)(23)			
L _{τ6}	1	(14) (25)	(12) (45)	(15) (24)	τ τ(14)(25)	τ(12)(45)	τ(15)(24)			
L _{T7}	(135)	(253)	(123)	(152)	τ τ(13)(25)	τ (15) (23)	τ(12)(35)			
L _{τ8}	(432)	(254)	(235)	(345)	τ τ(23)(45)	τ(25)(34)	τ(24)(35)			
L _{T9}	(134)	(145)	(354)	(153)	τ τ(15)(34)	τ(13)(25)	τ(14)(35)			

- (12)(34), then $\Gamma(A_5,\Omega_1)$ is isomorphic to the complete subgraph of G(V,L) on the points of τA_5 . Finally, for x,y ϵ A_5 the points x, τy of V are joined in G(V,L) if and only if xy^{-1} ϵ Ω_2 , where Ω_2 is the union of the A_5 -conjugacy classes of 1,(12)(34) and (123).
- (ii) In view of (i) it will be clear that verification G_0 is strongly regular and therefore the proof of the first statement of the theorem could be done without using quaternions or E_8 .
- (iii) A is a subgroup of $\operatorname{Aut}(V,L)$ of order $2^5.3^2.5$. On the other hand, $\operatorname{Aut}(V,L)$ is a subgroup of $\operatorname{Aut}(E_8)/\{\pm I\}$, so the order of $\operatorname{Aut}(V,L)$ must divide $2^{13}.3^5.5^2.7$.

Note that ${\rm Aut}({\rm V},L)$ cannot be all of ${\rm Aut}({\rm G_0})$, since the latter group acts transitivily on the family of 15 × 135 8-cliques in ${\rm G_0}$, while no more than 135 8-cliques of ${\rm G_0}$ originate from lines in L.

(iv) Consideration of parameters might lead to the expectation that the choice of an appropriate sub-family L_0 of lines in L provides a partial geometry on V with parameters $(s,t,\alpha)=(7,4,2)$ or (even weaker) a strongly regular graph with parameters $(v,k,\lambda,\mu)=(120,35,10,10)$. However no selection of A-orbits from L leads to such a family L_0 .

REFERENCES

- [1] BIGGS, N., Algebraic graph theory, Cambridge University Press, Cambridge, 1974.
- [2] BOURBAKI, N., Groupes et algebres de Lie, Chap IV, V, VI, Hermann, Paris, 1968.
- [3] BOSE, R.C., Strongly regular graphs, partial geometries, and partially balanced designs, Pac. J. Math. 13, (1963) 389-419.
- [4] SERRE, J.-P., A course in Arithmetic, Springer Verlag (Graduate Texts in Math No 7) 1973.